
Supplementary Materials and Methods  

1 The model and the problem 

We assume that the observed data are given by 

Yt = L CkSt-Tk + Wt,
k (1) 

where Ck is an unknown constant, St is a known signal of finite duration 
L, Tk is the delay of the kth replica of the signal, and the samples Wt are 
independent and zero mean Gaussian, i.e., Wt~ N(O, o-2), with the variance 
of the noise being unknown. 

The problem is to estimate the time instants Tk and treat the remaining 
unknowns as nuisance parameters. In solving this problem, we follow the 
Bayesian methodology. 

2 Solution based on the raw data 

Let us assume that the (k- l)st beat was detected at Tk-1· We assume that 
approximately the next beat is in the proximity of Tk-1 + 'h, where Tk =
Tk-1-Tk-2· The idea is to test several models of the formp(M£,k1Yt1 :t2 , s, T£,k), 
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Bayesian modeling framework for the detection of heart beats 
from ECG Data
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Classification of accelerometer data into behavior using a hidden 
Markov model 

We used a previously developed and validated unsupervised hidden Markov model (HMM) to 
classify accelerometer-derived metrics into 30-second timeseries of three states (‘flapping flight’, 
‘soaring flight’, and ‘on-water’; Conners et al. 2021). In brief, we first derived two additional 30-
s data streams (‘features’) as input for the HMM: 1) ‘hf’ - the highest dominant frequency in the 
dynamic heave acceleration signal and 2- ‘p5’ – the top 5th quantile in the static heave 
acceleration signal. These features effectively distinguish flight behaviors (flapping flight has 
high heave frequency while soaring flight has a low frequency) as well as on-water behavior 
(which has a lower static heave acceleration relative to flight). An optimization routine identified 
the best-fitting model from 25 runs where each iteration used a randomly generated set of 
starting values to fit each feature distribution. The best-fitted model was identified as the model 
with the largest maximum likelihood. A Viterbi algorithm then estimated the most likely 
sequence of states (behaviors) from the fitted model. The hidden Markov model for behavioral 
classification and was implemented in RStudio (v1.2.1335) with the R statistical language 
(v4.0.3) using the ‘momentuHMM’ package (McClintock & Michelot 2018). 

Linear mixed models 

A total of 3 models were built on 30-minute datasets using movement metrics as explanatory 
variables (Table S1): ODBA, VeSBA, and nFlaps). The interaction between percentage time 
soaring and ODBA and VeSBA was included to determine how flight mode influenced the 
relationships of these metrics with V̇ O2. Initial models included species, sex, mass, and number 
of landings as fixed effects. Bird was included as a random effect, modeled with random 
intercepts, to control for individual variation and to account for uneven repeated sampling across 
birds. We used a stepwise deletion model selection technique to identify the most parsimonious 
final models by dropping non-significant terms and noting the change in Akaike’s information 
criterion (ΔAIC). When running model selection procedures, we estimated mean and variance 
parameters using maximum likelihood (ML), while final models used restricted maximum 
likelihood (REML) to separate the likelihood estimates from fixed and random parameters. All 
model fits were evaluated by inspecting normality and heteroscedacity of residuals.  

While a 30 min resolution accounts for physiological steady-state and is consistent with 
timescales that albatrosses use for behavioural decision making (e.g., 1-2 landings hr-1, 
Weimerskirch & Guionnet 2002) other ecological questions around movement strategy and its 
consequences are better considered at longer-timescales. Here a daily time and energy budget is 
relevant as the accuracy of energetic estimates is likely to increase with increasing timescales 
( Green, 2011). To evaluate the effect of timescale on these estimates we ran a second set of 
LMMs (‘validation models’) to evaluate how well movement metrics predicted fH-derived V̇ O2 
at increasing timescales (30-min, 12-hr, 24-hr; (Table 2). For example, to evaluate model 
performance at a daily (24-hour) scale, we used the mean values of ‘model-predicted V̇ O2’ 
(predicted from the best-performing models described above) and ‘fH-derived V̇ O2’ within 24-
hour windows along each bird’s deployment. Predicted values were estimated both with and 
without bird identity as a random effect to evaluate how individual variability affected model 
predictions. Daily V̇ O2 predicted from each model was then included as the explanatory variable 
in a series of LMMs, with fH-derived V̇ O2 as the response variable, and bird as a random effect 
to 
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account for the deployment durations. Equivalent procedures were performed at the 12-hr 
timescale and the 30-min. timescale. Predictive performance was evaluated by slope and R2 
(marginal and conditional) calculated with the ‘MuMlm’ R package (Bartón 2022).  

Fig. S1. Heartrate–V̇ O2 curves from two methods: 1) Bevan et al., 1995 (black points) and 2) 
Bishop & Spivey (2013) (lines and confidence intervals colored by individual bird). Heartrate–
V̇O2 curves from both methods are plotted over histograms representing the distribution of 
heartrates observed in the two study species. At higher heartrates, V̇O2 values estimated using the 
Bishop & Spivey method diverge from V̇O2 values estimated using the Bevan method; however, 
V̇O2 estimates from both methods overlap significantly for the majority of observed heartrates. 
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Fig. S2. An example of the derivation of AvEYsoar and the post-derivation correction of 
AvEYsoar used to obtain the size (in degrees) of soaring arcs performed by albatross. Total 
acceleration is provided to demonstrate that most of this timestamp contains soaring flight 
(Conners et al., 2021) except for a short flapping burst at 2.756 hours (as seen in the high 
frequency and high amplitude heave acceleration data stream (yellow)). Raw heading obtained 
from the magnetometer data (and corrected using pitch and roll data from the accelerometer) 
ranges from 0-360 degrees, with large jumps in the plot not representing changes in heading of 
that magnitude, but rather a radial crossing of the 0º|360º location on the circular axis. AvEYsoar 
was derived from the heading timeseries and represents the absolute change in degree headings 
over a 3-s moving window. In this example, a single large jump (>200º) in the data is observed 
around 2.78 hrs. This artifact was corrected (as detailed in the Methods) to produce the AvEYsoar 
corrected timeseries. 
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Fig. S3. Validation model results (with the exception of ‘Model 3: nFlaps’, displayed in Figure 
4 of the main text) demonstrating the influence of timescale (daily vs. 30-min) and random 
effect of bird on model relationships. For each model, panels a) and b) represent the relationship 
between V̇ O2 and movement metrics at the daily scale while c) and d) represent the relationship 
at the 30-min scale. Panels b) and d) demonstrate the increase in predictive power of the model 
when the random effect of bird is included in the predictive function. 

Fig. S4. Example of a ~2 sec timeseries of static and dynamic acceleration demonstrating 
patterns of acceleration during dynamic soaring and flapping flight. During a bout of dynamic 
soaring (~22-22.6 min), you can observe the large cyclical undulation of heave acceleration 
which occurs at a longer timescale than the large dynamic signals of flapping (starting at ~22.75) 
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Fig. S5. For each bird’s dataset, mean model divergence is plotted against percent of the trip 
spent soaring. A general trend of increasing divergence with increasing percent time soaring is 
observed; however, this trend was not significant (p>0.05) for all models. Model divergence was 
calculated by taking the absolute value of the difference between model-predicted V̇ O2 and fH-
derived V̇ O2, then taking the mean difference of each birds’ dataset. Datasets used here were 
from the daily time scale.
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Table S1. The final set of models evaluating relationships between movement metrics and fH-derived V̇ O2 (the dependent 
variable). Estimates and confidence intervals were back-transformed from the log-scale, since fH-derived V̇ O2 was log 
transformed in all models.  

Model Term Estimate conf.low - conf.high Df p-value 
1. ODBA:pSoar + nLandings + mass Intercept 7.74 3.620 - 16.540 5182 <0.001 

ODBA 4.16 3.606 - 4.787 5182 <0.001 
pSoar 1.01 1.005 -1.006 5182 <0.001 
nLandings 1.04 1.026 - 1.045 5182 <0.001 
Mass 1.45 1.132 - 1.85 24 0.0037 
ODBA:pSoar 0.98 0.980 - 0.985 5182 <0.001 

2. VeSBA:pSoar + nLandings + mass Intercept 0.94 0.437 - 2.015 5182 <.0001 
VeSBA 11.49 9.185 - 14.363 5182 0.0179 
pSoar 1.03 1.023 - 1.029 5182 <.0001 
nLandings 1.05 1.046 - 1.054 5182 <.0001 
Mass 1.45 1.143 - 1.836 24 0.0035 
VeSBA:pSoar 0.98 0.973 - 0.978 5182 <.0001 

3. nFlaps + nLandings + mass Intercept 11.36 5.438 - 23.737 5184 <.0001 
nFlaps 1.00 1.0003 - 1.0003 5184 <.0001 
nLandings 1.03 1.024 - 1.042 5184 <.0001 
Mass 1.45 1.140 - 1.840 24 0.0039 
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