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Supplementary Materials and Methods

Bayesian modeling framework for the detection of heart beats
from ECG Data

1 The model and the problem

We assume that the observed data are given by
Yt = Z CkSt—m, + Wi, (1)
k

where ¢ is an unknown constant, s; is a known signal of finite duration
L, 7 is the delay of the kth replica of the signal, and the samples w; are
independent and zero mean Gaussian, i.e., w; ~ N (0,02), with the variance
of the noise being unknown.

The problem is to estimate the time instants 73, and treat the remaining
unknowns as nuisance parameters. In solving this problem, we follow the

Bayesian methodology.

2 Solution based on the raw data

Let us assume that the (k —1)st beat was detected at 7x_1. We assume that
approximately the next beat is in the proximity of 7,1 + fk, where fk =

Tk—1—Tk—2- Theidea is to test several models of the form p(Mp i |ys,:t,, S, Te ),
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where £ is an index of the model (¢ € {1,2,...,2M + 1}, with 2M + 1 being
the number of models to choose from.!), vy .4y = {Yiy, Yty 415+ Yin }52 S 18
a known signal of length L,% and Tek € {Th—1 + fk — M, Tp_1 + fk - M +
1,...,7s1 —l—fk + M} is a candidate time of arrival of the kth beat.* The best
model (or the best estimate of 7;) will be the one that is associated with the

model that has the highest a posteriori probability (MAP estimate), that is

%\k = max a’rgTLk p(Mf,k ytl,k:tg,ka S, Tf,kv Da,k)’ (2)

where

tig = Th—1 + Ty, — M, (3)

t2,k=?k—1+fk+M+L—1, (4)

and D,  denotes past data with respect to t; ;. We observe that all the
models for the time of occurrence of the kth beat use the same vector of
observations.

We write for the a posteriori probability of model My,

P(Mep|yty itons 8 Tews Dpy ) 0 DYt gita |8 Ty Dy Mege) P(Meg Dy ),

(5)

where p(yt, ;15,5 Tek, Dy, » Me) is the likelihood of the model My, and

t1,k?

P(Myx|Dy, ) is the a priori probability of that model. For the first factor

The number of models may vary with time

2The interval ¢, : t2 contains the kth beat.

3Without loss of generality, we assume that L is an odd number.
4This is the time instant of the first sample of s in the kth beat.
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on the right hand side in (10) we have

(o) o0
p(ytl’k:tz,k’st—Tp,Dt_l’k;Mﬂ,k) = / / p(ytl,k:tz,k|377'€,k;Ce,k#T]%aMé,k)
J0 —00

x plek, o®| Dy, Myg)degpdo®. (6)
If we define the vector 5, € RZM+L)x1 by
01:4

’gf = S ) (7)

Oryn+1:2M 4L

we can write

DYt pito i |55 To s Cotes T Mug) = Dty piton 505 Cos s Mai)

~\ T ~
_ 1 X exp <_ (ytl,kitz,k - Cg,kSg) 2(yt1,k1t2,k - cf:’“”)) )
20}

(2770,%) N

where yp, 1, , € REM+L)x1

. We note that 7, “decides” the position of the
vector s in Sy.

The factor in the integrand in (6), p(Cg’k,Uz‘Dt_l’k,Mg’k), is the joint
prior of ¢/ and a,% learned from previous samples. Here we have several
options. One of them is to use the samples of y; before the expected arrival
of the kth beat (we use N of them) that do not have a beat, and for p(cy)

to adopt the noninformative prior (i.e., p(cx) o const). Then we have

p(o} Dy, s M) p(o? Yty — Nty —1)P(Ce k)

o P02 [Yty - Nity p-1)- (9)
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For p(az|yt1,k—N:t1,k_1), we write

p(o'l%‘yh,k—Nitl,k—l) X p(yh,k—Nitl,k—l ‘O'I%) p(O']%)

T

- 1 ytl’k—N:tl’k—lytl,k_N:tl,k_l 1

= —2 ~ X exp | — 557 % ?’
(2m02) 2 k k

where p(07) o % Here, we recall that an inverse Gamma random variable
k

X has a pdf given by
p(z) = =—= e =, x>0, (11)

where o > 0,8 > 0 are the shape and scale parameters of the distribu-
tion. We recognize from (10) that p(o®|y;, ,—nut, ,—1) is the inverse Gamma

distribution with parameters

N
_ 12
a=. (12)
y;I' N:t 1Yty —N:ty p—1
B: 1,k Vit g — 1,k ULk ' (13)

2
For simplicity in notation, in the next equations let y = yt, ,.t,,. Then

we can rewrite (8) as

P(Y|S, Teks Copy oy Mog) = p(y|31, cor, o, M)

1 (¢ —Cp)? y'y —Cxsy
= ———55¢ X exXp (—— xexp | ———5—= ], (14)

~ —1 2
(271'0,%) 2 2(575) U[% 20,
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where ¢, = ('§Z'§g)_1 fsjy. First we integrate out ¢, in (6) and obtain

p(yh,kitz,k |5t—Tev D;,kv Mf,k)

e 1 ( y'y—a kgTy) 1 ( ?7T?7> 9
o —————exp | — : X x exp | —=— | doj,
/0 (gi)LEL ! 207 (02) S+l 207

k
(15)
where §y = Yty o Nity —1- From
/00 _O‘_le_gdx = Fﬂ(z), (16)
0
we deduce that
D(y]St—rys D;ykaMZ,k) ~ (§T§+ yTy2 — oSy AMALEN-1 -

We use (17) to compute the probabilities of the various models. If we
assume the uniform prior for the model, it is sufficient to compute the right
hand side of (17) and pick the model with the highest value. Since 7' g+y 'y

is the same for the models, the best model is the one that is selected by

My = arg InélX ’c}}k'sVTy

-1
= argmax y'3y (?Z?g) 5Ty

= arg max(3{ y)* (18)

because 3, 3 is not a function of £. Thus, we have to use a simple correlator
to pick the best model. However, we reiterate, we must use (17) to find the
probabilities of all the models.

In summary, the approach can be implemented as follows:
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1. Compute for all models 'sjy.

2. Pick the model with the highest probability according to (17) (i.e.,
according to (18)).

3 An alternative approach

Next we describe a modified algorithm. This is the algorithm that was

implemented. First, we form a sequence of differenced data by

Zt =Yt — Yt—1- (19)

Now the model in (1) becomes

2 = Z CkSt_r, + W, (20)
k
where
Sy =S¢ — S¢—1, (21)
Wy =W — Wi_1. (22)

With this preprocessing of the data we make z; zero mean, but we add
correlation to the noise (that is, w} and wj,_, are correlated). When we
downsample z; by two, this correlation disappears. After downsampling z;,
we obtain Z;, and we proceed with processing the data in the same way as
described in the previous section. We keep in mind that now the signal
template is the downsampled s}.

The method for processing the data has the following steps:
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1. Apply a low pass filter on the data with a bandwidth of (0 Hz -150
Hz),

2. Perform local detrending (see the package),
3. Calculate the differenced data,

4. Downsample the data by two (the template should also be downsam-

pled by 2).

Once the data are preprocessed, one estimates the time instants 73 as de-
scribed in Section 2.

Our last modification of the method allows for processing the data from
both time directions, forward and backward. More specifically, we propose

the following:

1. Implement the method from the first sample onward.

2. Repeat the process but starting with the last sample and moving back-

ward (the signal template should also be reversed).

3. If there is an agreement in the estimated times of the peaks, the esti-
mate is accepted. (First these estimates are accepted and then we pro-

ceed with the next step where the remaining estimates are accounted

for.)

4. If there is a disagreement, delete the estimates that have probabilities
less than 0.2. Otherwise, directly compare the probabilities of the two
estimates and choose the one with a higher probability. An alternative

is to use as an estimate the weighted average

Tk = 0Tfk + (1 — p)Tok, (23)
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where 7y and 7, are the forward and backward estimates and p is
the probability associated with 77 ;. Further details are provided in
the program. The disagreement has to be smaller than the interval

%f, where T is the median of the period between two signal arrivals.
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Classification of accelerometer data into behavior using a hidden
Markov model

We used a previously developed and validated unsupervised hidden Markov model (HMM) to
classify accelerometer-derived metrics into 30-second timeseries of three states (‘flapping flight’,
‘soaring flight’, and ‘on-water’; Conners et al. 2021). In brief, we first derived two additional 30-
s data streams (‘features’) as input for the HMM: 1) ‘hf” - the highest dominant frequency in the
dynamic heave acceleration signal and 2- ‘p5’ — the top 5™ quantile in the static heave
acceleration signal. These features effectively distinguish flight behaviors (flapping flight has
high heave frequency while soaring flight has a low frequency) as well as on-water behavior
(which has a lower static heave acceleration relative to flight). An optimization routine identified
the best-fitting model from 25 runs where each iteration used a randomly generated set of
starting values to fit each feature distribution. The best-fitted model was identified as the model
with the largest maximum likelihood. A Viterbi algorithm then estimated the most likely
sequence of states (behaviors) from the fitted model. The hidden Markov model for behavioral
classification and was implemented in RStudio (v1.2.1335) with the R statistical language
(v4.0.3) using the ‘momentuHMM’ package (McClintock & Michelot 2018).

Linear mixed models

A total of 3 models were built on 30-minute datasets using movement metrics as explanatory
variables (Table S1): ODBA, VeSBA, and nFlaps). The interaction between percentage time
soaring and ODBA and VeSBA was included to determine how flight mode influenced the
relationships of these metrics with V O». Initial models included species, sex, mass, and number
of landings as fixed effects. Bird was included as a random effect, modeled with random
intercepts, to control for individual variation and to account for uneven repeated sampling across
birds. We used a stepwise deletion model selection technique to identify the most parsimonious
final models by dropping non-significant terms and noting the change in Akaike’s information
criterion (AAIC). When running model selection procedures, we estimated mean and variance
parameters using maximum likelihood (ML), while final models used restricted maximum
likelihood (REML) to separate the likelihood estimates from fixed and random parameters. All
model fits were evaluated by inspecting normality and heteroscedacity of residuals.

While a 30 min resolution accounts for physiological steady-state and is consistent with
timescales that albatrosses use for behavioural decision making (e.g., 1-2 landings hr!,
Weimerskirch & Guionnet 2002) other ecological questions around movement strategy and its
consequences are better considered at longer-timescales. Here a daily time and energy budget is
relevant as the accuracy of energetic estimates is likely to increase with increasing timescales
( Green, 2011). To evaluate the effect of timescale on these estimates we ran a second set of
LMMs (“validation models’) to evaluate how well movement metrics predicted fz-derived V O
at increasing timescales (30-min, 12-hr, 24-hr; (Table 2). For example, to evaluate model
performance at a daily (24-hour) scale, we used the mean values of ‘model-predicted V O’
(predicted from the best-performing models described above) and ‘fy-derived V O2” within 24-
hour windows along each bird’s deployment. Predicted values were estimated both with and
without bird identity as a random effect to evaluate how individual variability affected model
predictions. Daily V O» predicted from each model was then included as the explanatory variable
in a series of LMMs, with fy-derived V O as the response variable, and bird as a random effect
to
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account for the deployment durations. Equivalent procedures were performed at the 12-hr
timescale and the 30-min. timescale. Predictive performance was evaluated by slope and R?
(marginal and conditional) calculated with the ‘MuMIm’ R package (Barton 2022).

a) Black-browed albatross b) Grey-headed albatross
375 3751
fu-derived|VO, fu-derived|VO,
300 300
—~ 250 ] _ 2501 Bishop-Spivey
?9 Bishop-Spivey N‘g
= ] 200 = 200
IS €
> >
3 3
125 125
100 100
0 0 01 0
0 100 200 300 0 100 200 300
Heart Rate (beats min-") Heart Rate (beats min-")

Fig. S1. Heartrate—V O; curves from two methods: 1) Bevan et al., 1995 (black points) and 2)
Bishop & Spivey (2013) (lines and confidence intervals colored by individual bird). Heartrate—
VO, curves from both methods are plotted over histograms representing the distribution of
heartrates observed in the two study species. At higher heartrates, VO» values estimated using the
Bishop & Spivey method diverge from VO, values estimated using the Bevan method; however,
VO, estimates from both methods overlap significantly for the majority of observed heartrates.
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2
Total A TR L TR TV ) TATRYL
leration )
Acce(g)ato [0 TV NS ™ SO PN N P SRR ,\,_“.nvw‘*,%wﬁw_._,A\\\naM.rvy'w-Nw"'M*M'Mw»‘ﬂw-~wuv\‘:«—w~mml’hV(Y‘M‘M“""‘"“IM‘*/W
2.735 2.74 2.745 2.75 2.755 2.76 2.765 2.77 2.775 2.78
400
Heading 200
© A '
0 —\ ~ ~ /ANPN N | \ A~/
2.735 2.74 2.745 2.75 2.755 2.76 2.765 277 2.775 2.78
200
AVEYsoar OWMW \/\/\/\/
(0)
200
2.735 2.74 2.745 275 2.755 2.7 2.765 2.7 2.775
200
AvEYsoar
corrected o
(0)
200
2.735 2.74 2.745 2.75 2.755 .7 2.765 . 2.775
Time (hr)

Fig. S2. An example of the derivation of AVEYar and the post-derivation correction of

AVEY sar used to obtain the size (in degrees) of soaring arcs performed by albatross. Total
acceleration is provided to demonstrate that most of this timestamp contains soaring flight
(Conners et al., 2021) except for a short flapping burst at 2.756 hours (as seen in the high
frequency and high amplitude heave acceleration data stream (yellow)). Raw heading obtained
from the magnetometer data (and corrected using pitch and roll data from the accelerometer)
ranges from 0-360 degrees, with large jumps in the plot not representing changes in heading of
that magnitude, but rather a radial crossing of the 0°|360° location on the circular axis. AvEYsoar
was derived from the heading timeseries and represents the absolute change in degree headings
over a 3-s moving window. In this example, a single large jump (>200°) in the data is observed
around 2.78 hrs. This artifact was corrected (as detailed in the Methods) to produce the AVEY soar
corrected timeseries.
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Model 1: Overall Dynamic Body Acceleration Model 2: Vectorial Static Body Acceleration

a) Daily scale without random effects  b) Daily scale with random effects a) Daily scale without random effects b) Daily scale with random effects
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¢) 30-min scale without random effects d) 30-min scale with random effects ¢) 30-min scale without random effects d) 30-min scale with random effects
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Model-Predicted VO2 Model-Predicted VO2 Model-Predicted VO2 Model-Predicted VO2

Fig. S3. Validation model results (with the exception of ‘Model 3: nFlaps’, displayed in Figure
4 of the main text) demonstrating the influence of timescale (daily vs. 30-min) and random
effect of bird on model relationships. For each model, panels a) and b) represent the relationship
between V Oz and movement metrics at the daily scale while c¢) and d) represent the relationship
at the 30-min scale. Panels b) and d) demonstrate the increase in predictive power of the model
when the random effect of bird is included in the predictive function.
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Fig. S4. Example of a ~2 sec timeseries of static and dynamic acceleration demonstrating
patterns of acceleration during dynamic soaring and flapping flight. During a bout of dynamic
soaring (~22-22.6 min), you can observe the large cyclical undulation of heave acceleration
which occurs at a longer timescale than the large dynamic signals of flapping (starting at ~22.75)
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a) VO, ~ ODBA x %Soaring b) VO, ~ VeSBA x %Soaring c) VO, ~ nFlaps x %Soaring
15 15 15
510 510 510
(i (i .4 ,
(0] 1 L g ) N E} . — .
3 . : o 0 o o
= 5 :’%‘—.’ =N o ———— | = /“"
e | J |
0 0 0
30 40 50 60 70 30 40 50 60 70 30 40 50 60 70
% trip soaring % trip soaring % trip soaring

Fig. SS. For each bird’s dataset, mean model divergence is plotted against percent of the trip
spent soaring. A general trend of increasing divergence with increasing percent time soaring is
observed; however, this trend was not significant (p>0.05) for all models. Model divergence was
calculated by taking the absolute value of the difference between model-predicted V O2 and f-
derived V O», then taking the mean difference of each birds’ dataset. Datasets used here were

from the daily time scale.
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Table S1. The final set of models evaluating relationships between movement metrics and fH-derived V O2 (the dependent
variable). Estimates and confidence intervals were back-transformed from the log-scale, since ff/-derived V O2 was log

transformed in all models.

Model Term Estimate conf.low - conf.high Df p-value
1. ODBA:pSoar + nLandings + mass | Intercept 7.74 3.620 - 16.540 5182 <0.001
ODBA 4.16 3.606 - 4.787 5182 <0.001
pSoar 1.01 1.005 -1.006 5182 <0.001
nLandings 1.04 1.026 - 1.045 5182 <0.001
Mass 1.45 1.132-1.85 24 0.0037
ODBA:pSoar 0.98 0.980 - 0.985 5182 <0.001
2. VeSBA:pSoar + nLandings + mass | Intercept 0.94 0.437-2.015 5182 <.0001
VeSBA 11.49 9.185-14.363 5182 0.0179
pSoar 1.03 1.023 - 1.029 5182 <.0001
nLandings 1.05 1.046 - 1.054 5182 <.0001
Mass 1.45 1.143 - 1.836 24 0.0035
VeSBA:pSoar 0.98 0.973 - 0.978 5182 <.0001
3. nFlaps + nLandings + mass Intercept 11.36 5.438 - 23.737 5184 <.0001
nFlaps 1.00 1.0003 - 1.0003 5184 <.0001
nLandings 1.03 1.024 - 1.042 5184 <.0001
Mass 1.45 1.140 - 1.840 24 0.0039
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