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INTRODUCTION
Sleep is an important part of an animal’s life, yet the actual 

function of sleep remains actively debated.1-5 Every organism 
studied has been found to sleep in some manner,6 even though 
the reduction in environmental awareness can be dangerous.7 
Mammals engage in two types of sleep: rapid eye movement 
(REM) sleep and non-rapid eye movement (NREM) sleep. 
REM sleep is characterized by low-amplitude, high-frequency 
activity in the electroencephalogram (EEG) similar to that 
occurring during wakefulness.8 REM sleep is distinguished 
from wakefulness by a marked reduction in skeletal muscle 
tone, as well as behavioral signs of sleep, including eye closure 
and an increased arousal threshold.8 NREM sleep is character-
ized by high-amplitude, low-frequency EEG waves (typically 
0.5-4.5 Hz) and thalamocortical spindles,9 intermittent bursts 
of waxing and waning (i.e., spindle-shaped) activity. Although 
the general characteristics of spindles are similar, the frequency 
of the oscillations varies across species (e.g., echidna, 6-8 
Hz10; opossum, 8-11 Hz11; armadillo, 12 Hz12; sloth, 6-7 
Hz13; guinea pig, 13-15 Hz14; cat, 7-14 Hz15; dog, 12-15 Hz16; 
human, 12-15 Hz17).
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The amount of time spent sleeping, as well as the relative 
time spent in NREM and REM sleep, varies greatly between 
species.18-20 It has been proposed that predation pressure can 
partially explain the diversity of sleep patterns observed in 
mammals7,21,22 and other animals.23-25 When compared with 
NREM sleep, REM sleep appears to be particularly sensitive 
to predation risk, perhaps because higher arousal thresholds 
during REM sleep might render an animal more vulnerable to 
predation.19,22,26 In interspecific comparisons of sleep in captive 
mammals, prey species that sleep exposed to predators in 
the wild spend a lower percentage of their total sleep time in 
REM sleep (percent REM sleep) than those that sleep in low-
risk settings in the wild.21,22 In addition, in laboratory experi-
ments, rodents exposed to simulated predation attacks exhibit 
a pronounced reduction in percent REM sleep,27,28 particularly 
when the threat is inescapable.29 However, it remains unclear 
whether these relationships exist in the wild or simply reflect an 
artifact of the captive environment.

Until recently, EEG investigations of sleep in animals were 
confined to captivity. However, as technological advances 
allow more biological processes to be studied in the wild, it 
is becoming apparent that studies involving wild and captive 
individuals of the same species often yield largely contradictory 
results. For example, circadian rhythms, immune function, and 
reproductive physiology are influenced by captivity.30-32 In addi-
tion, in the first EEG-based study of sleep in an animal in the 
wild, we found that brown-throated three-toed sloths (Bradypus 
variegatus) in the rainforest slept more than 6 h less than ones in 
captivity.13,33 This finding high-lighted persistent concerns that 
prior comparative studies based on sleep durations in captive 
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animals may have been confounded by the captive environ-
ment.22,34 Although the reasons for more sleep in captive sloths 
remain unclear, one possible explanation is that they do not face 
the risk of predation as do their wild counterparts, and therefore 
are free to sleep longer.

Herein, we examined sleep in two closely related species 
of three-toed sloths living under different predation pressure 
situations. One population lives in the tropical rainforest with 
natural predators (mainly nocturnal cats), and the other lives on 
an isolated island with no apparent predators.35 Based on the 
hypothesis that the lower amount of sleep in wild sloths reflects 
a response to increased predation pressure, we predicted that 
sloths living in the high predation habitat would (1) sleep less, 
(2) show reduced REM sleep as a percent of total sleep time, 
and (3) show a preference for sleeping during the day, when 
nocturnal cats are sleeping.36

METHODS

Ethics Statement
This study and all methods used, including animal capture, 

handling, and logger attachment, were fully approved by the 
Smithsonian Tropical Research Institute’s Animal Care and 
Use Committee (IACUC). The fieldwork was conducted under 
research permit SA/E 21-09, granted by La Autoridad Nacional 
del Ambiente (ANAM).

Animals, Locations, and Environmental Conditions
Bradypus variegatus: The brown-throated three-toed sloth is 

an arboreal mammal common throughout tropical rainforests 
in Central America and South America. They feed on a variety 
of tree and liana species.37 B. variegatus is vulnerable to a 
number of natural predators, including nocturnal cats38,39 and 
possibly owls,40 and diurnal harpy eagles (Harpia harpyja)41,42; 
although harpy eagles became extinct in the study area in the 
last century.43 Average body weight is 4 kg, and their average 
home range in Panama is 1.5 hectares.37

Bradypus pygmaeus: The pygmy sloth is endemic to Isla 
Escudo de Veraguas, Panama (9° 5’58.78”N, 81°33’33.60”W). 
It is closely related to B. variegatus, and has been separated 
geographically for only 8,900 years.35 B. pygmaeus is found 
mainly in patches of red mangroves (Rhizophora mangle), 
and is thought to eat predominantly, if not solely, mangrove 
leaves,44,45 although this feeding habit has not been system-
atically studied. They face no natural predators on the island. 
Their average weight is 3 kg, and their population and home 
range are unknown.

B. variegatus (hereafter referred to as mainland sloths) were 
studied in the rainforests near Almirante, in Bocas del Toro, 
Panama (9°19’2.29”N, 82°26’29.91”W) between April 7-17, 
2009. During this period sunrise ranged from 06:18-06:23 
and sunset was at 18:39. Human settlements are scattered 
throughout the forest. Sloths are abundant, as are their main 
nocturnal feline predators, ocelots (Leopardus pardalis), pumas 
(Puma concolor), and margays (Leopardus wiedii).46,47

B. pygmaeus (hereafter referred to as island sloths) were 
studied in the mangroves of Isla Escudo de Veraguas. The island 
is 4.3 km2 and is 17.6 km offshore from the Valiente Peninsula. 
Recordings were done between April 20-29, 2009. During this 

period, sunrise occurred from 06:11-06:14 and sunset from 
18:37-18:38. Consequently, day length differed between the 
recording periods for each sloth species by less than 10 min.

Weather data was obtained from Bocas del Toro 
(9°20’45.69”N, 82°15’11.74”W), the closest weather station to 
the two study sites. The station is approximately 21 and 80 km 
from the mainland and island sloth populations, respectively; 
the distance between the two populations is approximately 
100 km. The minimum (min) and maximum (max) tempera-
tures during the recording periods for the two sloth species 
were similar (mean ± standard error of the mean [SEM]; 
mainland sloths, min 24.3 ± 0.2ºC, max 29.7 ± 0.3ºC; island 
sloths, min 24.6 ± 0.3ºC, max 29.1 ± 0.4ºC; unpaired two-tailed 
t-tests; min, P = 0.40 and max, P = 0.17). Rain was reported 
(but not quantified) on 72.3% and 70.0% of the days during 
the recording period for the mainland and island sloths, respec-
tively. Although these data suggest that the weather condi-
tions were similar during the two recording periods, we cannot 
rule out the possibility that very local differences in weather 
occurred during the two recording periods.

Animal Capture and Recapture
Fifteen adult sloths (mainland: five males and four females; 

island: six males; sex determined by pelage) were caught using 
single rope-climbing technique and a snare pole,37 or when 
possible, by hand. On the ground, the sloths were held while an 
EEG logger (Neurologger 248, www.vyssotski.ch/neurologger2) 
was attached to their head (see next paragraphs). In addition, 
sloths were fitted with a radio collar (www.ATS-Tracking.com) 
to relocate them. After attaching the equipment, the sloths were 
placed at the base of the tree where they were caught.

EEG and Electromyogram Recording
The EEG logger attachment procedure that was used previ-

ously on sloths was followed.33 A patch of hair was trimmed 
directly over the cranium. The scalp was disinfected with 
alcohol wipes and sprayed with an analgesic (Gingicain® 
aerosol, Sanofi-Aventis GmbH, Frankfurt, Germany). 
The electrode placement along the anterior-posterior axis 
was standardized across sloths of different sizes using the 
distance between a palpable anterior cranial concavity over 
bregma and a posterior concavity over lambda (Figure 1). 
The distance between bregma and lambda was divided into 
segments of 25%. For each hemisphere, an anterior electrode 
(silver wire, 7/40 AG, Sigmund Cohn, Mt Vernon, NY) was 
inserted under the skin with a 22-gauge needle, at a point 25% 
posterior to bregma. A second wire was inserted 25% anterior 
to lambda. Each wire was equidistant from the midline and the 
most dorsal point of attachment of the temporalis muscle, also 
palpable through the skin. Because the EEG electrodes were 
close to major points of muscle attachment (Figure 1), they 
were also sensitive to changes in muscle tone. The ground 
was centered between the other electrodes. The wires were 
fixed in place using adhesive glue, and were then connected to 
the logger. The logger was housed in a modified film canister, 
which was then glued to the top of the head (Figure 2). The 
logger was powered by a 3.6-V battery (Saft, model LS-14250, 
Bagnolet, France). The total weight of the logger, battery, and 
housing (18 g), plus the radio collar (56 g) was less than 3% of 
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the animal’s weight. All research equipment was completely 
removed from the animal at the end of the study. The sloths 
showed no signs of scratching at or otherwise being bothered 
by the equipment. Bipolar EEG signals from each hemisphere 
were sampled and recorded at 100 Hz. The recordings lasted 
between 212 and 241 h.

State Scoring
The EEG data was downloaded and imported into Somno-

logica Science Software (MedCare Corporation, Newport 
Beach, California, USA) for scoring and analysis. During 
scoring, each signal was visualized with the filters set for EEG 
activity (0.5-30 Hz pass) and again with the filters set for elec-
tromyogram (EMG) activity (> 30 Hz pass) (Figure 3). For 

each sloth, the state (wakefulness, NREM sleep, and REM 
sleep) was scored in 10-sec epochs for the last 3 full recording 
days, sunrise to sunrise. NREM sleep was characterized by 
high-amplitude, low-frequency EEG activity (≈ 0.8-4.0 Hz). 
In addition, brief bursts of 6.0-8.0 Hz activity occurred inter-
mittently during NREM sleep, but not wakefulness or REM 
sleep (Figure 3). Given this pattern of occurrence, and the fact 
that such activity usually had a spindle shape (Figure 3A), it 
apparently reflects thalamocortical spindling.13 Spindles typi-
cally occurred simultaneously in both hemispheres, and were 
particularly apparent in the pygmy sloths (see next paragraph). 
As in the previous studies of captive13 and wild33 sloths, REM 
sleep was characterized by low muscle artifact and the onset 
of low-amplitude, high-frequency activity arising from a bout 
of NREM sleep (Figure 3A). Additionally, in all periods of 
REM sleep, distinctive rhythmic waxing and waning bursts of 
twitching were observed (Figure 3A) that resembled artifacts 
associated with feeding,13 but with drastically lower amplitude. 
This activity may reflect rhythmic, chewing-like movements 
similar to those recently described in guinea pigs during REM 
sleep.49 As in captive sloths,13 EMG activity either declined 
from prior NREM sleep levels, or if already low (the typical 
condition), showed no further changes during tonic REM sleep. 
The exact point of REM sleep onset was defined as the end of 
the last spindle, or the point at which the EMG artifact reduced 
if this occurred after the last spindle. The end of a bout of 
REM sleep was marked by either the resumption of spindles, 
or in most cases, an awakening characterized by an abrupt and 
tonic increase in EMG activity (Figure 3B). Epochs with more 
than one state were scored according to the predominant state. 
During wakefulness, time spent feeding (i.e., chewing) was 
scored for each sloth based on large, stereotypical rhythmic 
artifacts (≈ 1.0 Hz).13,33

The following variables were calculated and averaged across 
the three scoring days for each sloth: percent time spent in each 
state (wakefulness, NREM sleep, and REM sleep) per 24-h day, 

Figure 1—Sagittal cross section (top) and dorsal view (bottom) of 
Bradypus variegatus’ (CT image) skull showing electrode placement. 
Electroencephalogram (EEG) electrodes (red dots) and bipolar EEG 
derivations (red lines) are shown relative to bregma (B), lambda (L), 
and the most dorsal point of attachment of the temporalis muscle (T). 
The green dot shows the ground electrode. The sagittal cross-section 
through the midline shows the concavities overlying the cranial sutures 
bregma and lambda, and their positions relative to the underlying brain 
case. These surface concavities were palpable through the skin and 
used as landmarks. Given that the skull structure of B. pygmaeus and B. 
variegatus are very similar,35 the same landmarks were used to position 
the electrodes in both species. The electrode placement was scaled to 
the size of the individual’s skull. Ob, olfactory bulb; Cb, cerebellum. CT 
images provided with permission from Digimorph.org.

Figure 2—Brown-throated three-toed sloth equipped with an encephalo-
graphic logger (black hat).
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percent of total sleep time spent in REM sleep, percent time 
spent in each state for each hour of the 24-h day, and percent 
time spent in each state during the day (sunrise to sunset) and 
night (sunset to sunrise). Reported values for all variables are 
the mean of these individual sloth means. We calculated the 
mean duration of bouts of each state in a similar manner. A bout 
was defined as a sequence of consecutive epochs of one state. 
For statistical tests, we used the mean value for each variable 
from each sloth. As a result, the sample sizes were nine and 
six for mainland and island sloths, respectively. Because the 
sample sizes for male (n = 5) and female (n = 4) mainland sloths 
were deemed too small for a statistical comparison, we only 
report mean values for each sex.

EEG Spectral Analysis
We calculated power density for each state using Somno-

logica’s fast Fourier transform function (0.8-25 Hz, in 0.4-Hz 
frequency bins). Only artifact-free periods of each state were 
used for the analysis. To account for potential differences in 
EEG amplitude related to interspecific differences in skull 
thickness and brain size, the spectral data for each sloth was 
standardized as a percentage of the 24-h NREM sleep mean 
across all frequency bins. Because EEG activity in the two 
hemispheres was similar, we randomly chose the left EEG for 
spectral analysis. In the few cases where the quality of the right 
EEG signal was markedly better than the left, we analyzed that 
signal instead.

RESULTS
The total sleep time for both sloth species was similar, with 

mainland sloths sleeping 9.60 ± 0.25 h (mean ± SEM) and 
island sloths sleeping 9.69 ± 0.4 h (unpaired, two-tailed t-test, 
P = 0.86; Figure 4). The amount of time spent in NREM sleep 
also did not differ significantly between the species (unpaired, 
two-tailed t-test, P = 0.25). The time spent in REM sleep 
showed a trend (unpaired, two-tailed t-test, P = 0.095) for more 
REM sleep in mainland sloths that was significant (unpaired, 
two-tailed t-test, P = 0.037) when REM sleep was expressed as 
a percentage of total sleep time. For mainland sloths, males and 
females spent 9.47 ± 0.10 h and 9.77 ± 0.15 h asleep, respec-
tively. Males spent 8.05 ± 0.03 h in NREM sleep and 1.41 ± 0.07 
h in REM sleep. Females spent 8.13 ± 0.08 h in NREM sleep 
and 1.64 ± 0.09 h in REM sleep. REM sleep as a percentage 

Figure 3—Electroencephalographic (EEG) recordings from Bradypus pygmaeus. (A) EEG recording (90 sec) showing a period of nonrapid eye movement 
(NREM) sleep transitioning into rapid eye movement (REM) sleep. NREM sleep was characterized by frequent high-amplitude spindles (blue diamonds) and 
slow waves. During REM sleep, a stereotypical and rhythmic “twitching” artifact is visible. (B) Transition from REM sleep to wakefulness characterized by 
an abrupt increase in tonic electromyogram (EMG) artifact in the EEG signal. The EMG signal was obtained by high-pass (> 30 Hz) filtering the EEG signal.

Figure 4—Time spent in each state. (A) Number of hours spent in 
wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye 
movement (REM) sleep in mainland (black) and island (gray) sloths. (B) 
REM sleep as a percentage of total sleep time for the two sloth species. 
Error bars show standard error of the mean.
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of total sleep time was 15.02 ± 0.55 % and 16.76 ± 0.75% for 
males and females, respectively.

The mean bout durations for wakefulness, NREM sleep, and 
REM sleep were similar for both sloth species. Bouts of wake-
fulness lasted 264.62 ± 26.90 sec and 279.43 ± 40.94 sec for 
mainland and island sloths, respectively (unpaired, two-tailed 
t-test, P = 0.76). Bouts of NREM sleep lasted 149.75 ± 14.46 
sec and 168.86 ± 25.11 sec for mainland and island sloths, 
respectively (unpaired, two-tailed t-test, P = 0.49). Bouts of 
REM sleep lasted 407.95 ± 40.52 sec and 449.81 ± 60.24 sec 
for mainland and island sloths, respectively (unpaired, two-
tailed t-test, P = 0.56). For male and female mainland sloths, 
respectively, bouts of wakefulness were 246.94 ± 26.62 sec and 
286.73 ± 53.54 sec, bouts of NREM sleep were 137.98 ± 11.28 
sec and 164.45 ± 30.21 sec, and bouts of REM sleep were 
435.42 ± 50.36 sec and 373.62 ± 70.12 sec.

Mainland sloths showed a preference for being awake during 
the day and asleep at night (unpaired, two-tailed t-test, P < 0.002), 
whereas island sloths showed no preference for day or night 
(unpaired, two-tailed t-test, P > 0.3; Figures 5 and 6). In addi-
tion, mainland sloths showed peak sleep amounts around sunrise 

and sunset, whereas only a single peak in sleep was observed in 
island sloths during the last third of the night. These differences 
in the timing of sleep do not appear to be attributable to differ-
ences in the composition of males and females in the two samples 
(i.e., all male in the island sloths), as male and female mainland 
sloths showed similar patterns (Figure 7); males slept 3.07 ± 0.26 
h and 6.39 ± 0.34 h during the day and night, respectively, and 
females slept 3.86 ± 0.75 h and 5.91 ± 0.66 h during the day and 
night, respectively. In both species, time spent feeding paralleled 
hourly changes in time spent awake (Figure 5), and reached their 
lowest levels during the last third of the night.

In both species, when compared to wakefulness and REM 
sleep, NREM sleep was characterized by increased power in low 
(0.8-5.0 Hz), spindle (6.0-8.0 Hz), and some higher frequencies 
(Figures 8A and 8B; see figure for statistics). The most striking 
differences between the species were found during NREM 
sleep (presented together with statistics in Figure 8C). In island 
sloths, standardized low-frequency (0.8-4.0 Hz) power was 
lower, and spindle (6.0-8.0 Hz) and higher frequency (13.0-18.0 
Hz) power were higher than in mainland sloths. Even at sleep 
onset, the ratio of spindle to low-frequency power was notice-
ably greater in island sloths. The spectral power was similar for 
male and female mainland sloths.

DISCUSSION
Both pygmy and brown-throated three-toed sloths slept just 

over 9.5 h per day. This finding is consistent with that of our 

Figure 5—Hourly time spent in each state. The percentage of time spent 
in wakefulness (green), nonrapid eye movement (NREM) sleep (blue), 
and rapid eye movement (REM) sleep (red) for each hour for (A) mainland 
and (B) island sloths. The bars on the x-axis mark day (sunrise to sunset, 
yellow) and night (sunset to sunrise, black). Data reflect averages of all 3 
days for each sloth. Percentage of time spent feeding (gray) is plotted on 
the secondary y-axis. Values for a given hour are plotted at the start of the 
hour. Error bars show standard error of the mean.

Figure 6—Time spent in the three states during the day and night. Time 
spent in wakefulness, nonrapid eye movement (NREM) sleep, and rapid 
eye movement (REM) sleep during the day (sunrise to sunset, yellow) 
and night (sunset to sunrise, black) for (A) mainland and (B) island sloths. 
Error bars show standard error of the mean.
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initial study of sleep in three wild brown-throated three-toed 
sloths from a different part of mainland Panama,33 which slept 
9.6 h. Thus, this appears to be the typical sleep amount for wild 
three-toed sloths, at least those living in Panama. These find-
ings are consistent with the observation that closely related 
species exhibit similar sleep durations.18

Based on the hypothesis that wild sloths sleep less than 
captive sloths due to a difference in predation pressure, we 
expected mainland sloths living with nocturnal predators to 
sleep less, engage in less REM sleep as a percent of total 
sleep time, and show a preference for sleeping during the 
day when compared to island sloths living without preda-
tors. However, the absence of a difference in total sleep 
time, the higher percent REM sleep, and the preference for 
sleeping at night in mainland sloths were all contrary to our 
predictions. These results suggest that factors other than 
predation, such as increased foraging time in the wild, may 

account for the differences in sleep amounts between captive 
and wild sloths.33

Our interpretation of these findings is dependent on an accu-
rate assessment of the relative risk of predation during sleep 
and wakefulness in sloths. For sloths, sleeping may actually be 
safer than being actively awake. Because sloths are slow and 
lack significant antipredator defenses,50 they may be particu-
larly vulnerable to detection and capture by predators when 
moving. In contrast to the ineffective fight or flight responses 
that might render sloths vulnerable to predation while active, 
their preference for sleeping sites high in the vegetation and 
their cryptic pelage (including green algae growing in their 
hair51,52) may make sleeping safer than being actively awake. 
Collectively, these factors may explain why mainland sloths, 
exposed to nocturnal predators, were primarily active during 
the day. In addition to the preference for sleeping at night, the 
fact that sleep was maximal around dusk and dawn when the 
activity of nocturnal cats is maximal53,54 also supports the notion 
that the timing of sleep and wakefulness in mainland sloths 
reflects an antipredator strategy. A similar shift toward being 
inactive when predators are active has been reported in Norway 
rats (Rattus norvegicus), which sleep safely in burrows.55 In 
addition, golden hamsters (Mesocricetus auratus), which also 
sleep in burrows, are nocturnally active in captivity, but diur-
nally active in the wild, possibly to avoid predation by owls.32 
Moreover, a recent evolutionary strategic model predicts that 
species that are safer when sleeping should sleep when their 
predators are active, whereas species that are more vulnerable 
when sleeping should sleep when their predators sleep.56

The higher REM sleep as a percentage of total sleep time in 
sloths exposed to predators may also be related to safety during 
sleep. If the risk of predation during sleep is low in both main-
land and island sloths, the potential influence of other, perhaps 
physiological, factors might play a greater role in determining 
the proportion of sleep dedicated to REM sleep. However, 
given that this difference was only marginally significant, and 
not significant when REM sleep was expressed as a percentage 
of recording time, we are reluctant to draw any further conclu-
sions. Ultimately, a larger sample of sloths and other species 
sleeping in the wild is needed to effectively identify factors 
influencing REM sleep.

Although sleep can be safer than being actively awake, this 
does not necessarily support the idea that the function of sleep 
per se is to enforce immobility at times of the day when it is 
either dangerous or unproductive to be awake (i.e., the immobi-
lization hypothesis).57 Indeed, three-toed sloths are very adept 
at remaining still and cryptic while awake, and usually resorted 
to this strategy when we approached them. Similarly, Mont-
gomery and Sunquist37 found that three-toed sloths did not react 
to a human attempting to catch them unless they were physi-
cally touched. Given that sloths do not need sleep to “enforce” 
immobility, sleep must serve other functions.4,7

Factors other than predation not assessed in this study might 
have also influenced sleep and its timing differently between 
the two species. For example, comparative studies based on 
captive mammals suggest that species feeding on low quality 
food spend less time sleeping.18,58 Consequently, dietary differ-
ences between the sloths species may have masked differ-
ences in sleep duration related to other ecological factors such 

Figure 7—Hourly time spent in each state for male and female mainland 
sloths. The percentage of time spent in wakefulness (green), nonrapid 
eye movement (NREM) sleep (blue), and rapid eye movement (REM) 
sleep (red) for each hour for (A) male and (B) female mainland sloths. 
The bars on the x-axis mark day (sunrise to sunset, yellow) and night 
(sunset to sunrise, black). Data reflects averages of all 3 days for each 
sloth. Values for a given hour are plotted at the start of the hour. Error 
bars show standard error of the mean.
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as predation risk. However, it is unclear how food quality or 
its spatial distribution relative to sleeping sites36 might have 
contributed to the differences in the timing of sleep given that 
both species fed during the day and night, and sleep in the same 
trees in which they forage (personal observation).

The spectral differences in standardized NREM sleep-
related EEG activity observed between the mainland and island 
sloths were unexpected. The island sloths showed significantly 
lower low-frequency power (or slow wave activity, SWA) 
and increased spindle and higher frequency power compared 
to mainland sloths. Based on the inverse relationship between 
SWA and spindles, and the positive relationship between SWA 
and sleep depth observed in humans,59 this difference could 
reflect differences in average sleep intensity between the two 
species. However, we observed that even at sleep onset when 
the first spindles occurred, spindle power relative to SWA was 
markedly greater in the island sloths. Consequently, differences 
in sleep intensity do not appear to fully explain the marked 
differences in NREM sleep EEG spectral power.

Based on research in humans, it is conceivable that the 
differences in spindling reflect different cognitive abilities and/
or demands in mainland and island sloths. For example, spin-
dling is positively correlated with IQ (intelligence quotient).60,61 
However, in the case of sloths, it is unclear what pressures 
would select for this trait only in island sloths. Given that 
spindles increase following learning, and the degree to which 
they increase predicts post-sleep cognitive performance,62-64 it 
is possible that increased spindling in island sloths reflects a 
response to waking experiences. However, differences in the 
sloths’ waking activity and challenges that might account for 
this difference in spindling are not readily apparent. Moreover, 
given the slower frequency of spindles in sloths (6-8 Hz), it 
is unclear whether they perform the same function as faster 
(12-15 Hz) spindles in humans.

Alternatively, the differences in NREM sleep EEG activity 
could simply reflect a selectively neutral artifact linked to the 
small size of the island population. For example, if the island 
population became unusually small in the past, and by chance 
genes responsible for increased spindles were disproportionally 
represented in the remaining population, this genotype would 
be more prevalent in the subsequent island population than in 
the mainland population.65 Consistent with this scenario is the 
fact that EEG traits are highly heritable.66

Although speculative, it is conceivable that the lower stan-
dardized SWA, higher standardized spindle power, and lower 
percent REM sleep seen in island sloths could be linked to diet. 
These characteristics of sleep mimic those observed following 
the consumption of benzodiazepines in humans and other 
mammals.67-70 Naturally occurring benzodiazepines or benzo-
diazepine-like compounds, with similar potentiating effects on 
γ-aminobutyric acidA (GABAA) receptors,71 have been isolated 
from a variety of plants, or their endophytic fungi, including 
those growing in marine-mangrove habitats.72-77 For example, 
benzalphthalides—a group of compounds with benzodiaz-
epine-like anxiolytic effects78—have been isolated from the 
fungi Guignardia species growing on the mangrove tree 
Kandelia candel in China.79,80 In addition to naturally occur-
ring compounds, human-made benzodiazepines have been 
found as pollutants in water systems81 at levels shown to alter 

Figure 8—Standardized EEG power density for each state. (A) Mainland 
sloths and (B) island sloths during wakefulness (green), nonrapid eye 
movement (NREM) sleep (blue), and rapid eye movement (REM) sleep 
(red). Lines at the top show significant (paired, two-tailed t-test, P < 0.05) 
differences between states. (C) Standardized NREM sleep power density 
from (A) and (B) plotted together to illustrate the differences between 
mainland (solid line) and island (dashed line) sloths. Lines at the top of 
the graph show significant differences (P < 0.05, P < 0.01, and P < 0.001). 
Power for each 0.4 Hz frequency bin is plotted at the start of the bin.
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vertebrate behavior, presumably via their effect on brain neuro-
chemistry.82 Interestingly, whereas mainland sloths are known 
to feed on at least 31 plant species,37 island sloths are thought 
to feed mainly on the leaves of red mangroves or other plants 
growing in this habitat.35 Indeed, over the 10-day study period, 
no island sloths moved over 20 m from their initial mangrove 
tree of capture, strongly suggesting that they did not leave the 
mangroves, and therefore presumably ate the leaves of plants 
growing in this habitat. Consequently, if the level of naturally 
occurring or human-made benzodiazepine-like compounds in 
the diet was higher in island sloths than in mainland sloths, this 
finding might explain many of the differences in sleep observed 
between the species. Although this hypothesis is specula-
tive, other mammals are known to regularly consume plants 
containing medicinal and/or psychoactive compounds.83,84 Ulti-
mately, a full characterization of the sloths’ diets and the level 
of benzodiazepine-like compounds found therein is needed to 
test this hypothesis.
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