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Abstract

Mammals and birds engage in two distinct states of sleep, slow wave sleep (SWS) and rapid eye movement (REM) sleep.
SWS is characterized by slow, high amplitude brain waves, while REM sleep is characterized by fast, low amplitude waves,
known as activation, occurring with rapid eye movements and reduced muscle tone. However, monotremes (platypuses
and echidnas), the most basal (or ‘ancient’) group of living mammals, show only a single sleep state that combines elements
of SWS and REM sleep, suggesting that these states became temporally segregated in the common ancestor to marsupial
and eutherian mammals. Whether sleep in basal birds resembles that of monotremes or other mammals and birds is
unknown. Here, we provide the first description of brain activity during sleep in ostriches (Struthio camelus), a member of
the most basal group of living birds. We found that the brain activity of sleeping ostriches is unique. Episodes of REM sleep
were delineated by rapid eye movements, reduced muscle tone, and head movements, similar to those observed in other
birds and mammals engaged in REM sleep; however, during REM sleep in ostriches, forebrain activity would flip between
REM sleep-like activation and SWS-like slow waves, the latter reminiscent of sleep in the platypus. Moreover, the amount of
REM sleep in ostriches is greater than in any other bird, just as in platypuses, which have more REM sleep than other
mammals. These findings reveal a recurring sequence of steps in the evolution of sleep in which SWS and REM sleep arose
from a single heterogeneous state that became temporally segregated into two distinct states. This common trajectory
suggests that forebrain activation during REM sleep is an evolutionarily new feature, presumably involved in performing
new sleep functions not found in more basal animals.
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Introduction

Mammals engage in two types of sleep, slow wave sleep (SWS)

and rapid eye movement (REM) sleep. SWS is characterized by

slow, high amplitude brain waves [1], while REM sleep is

characterized by fast, low amplitude waves (reflecting brain

activation), rapid eye movements, and reduced muscle tone [2].

Unlike SWS, which is initiated and maintained by the forebrain,

REM sleep-related cortical activation, rapid eye movements, and

reduced muscle tone are generated by the brainstem [2,3].

Interestingly, the cortex of monotremes (platypuses and echid-

nas), the most basal (or ‘ancient’) group of living mammals, shows

only SWS-like slow waves during sleep [4–6, but see 7].

Furthermore, during sleep in the platypus (Ornithorhynchus

anatinus), cortical slow waves occur with REM sleep-like rapid

eye movements and reduced muscle tone [8]. This suggests that

REM sleep at the level of the brainstem and SWS in the cortex

were present in the most recent common ancestor to all

mammals, and that REM sleep with cortical activation evolved

only after the appearance of the marsupial/eutherian lineage

[5,9]. Alternatively, the unusual brain activity of sleeping

monotremes may reflect an evolutionary loss of REM sleep with

cortical activation [10].

One way to distinguish between these possibilities would be to

characterize REM sleep in reptiles, the sister-group to mammals.

However, reptiles do not exhibit the neuronal activity observed in

the brainstem during REM sleep in mammals [11], including

monotremes [12], nor do they show cortical signs of REM sleep

and SWS [11,13,14]. Alternatively, animals that independently

evolved SWS and REM sleep may provide insight into the

evolution of REM sleep by revealing recurring evolutionary

patterns. Because birds are the only animals outside of mammals

to engage in SWS and REM sleep, only birds can provide such

insight. However, whether basal birds exhibit brain activity during

sleep that resembles that of monotremes or other mammals and

birds is unknown [15–19]. Here, we provide the first description of

sleep electrophysiology in ostriches (Struthio camelus), a member of

the most basal group of living birds. We found that the brain

activity of ostriches during sleep is unique, and most closely

resembles that of the distantly-related monotremes, revealing a

recurring sequence of steps in the evolution of REM sleep.

Methods

Six female adult ostriches (8264 kg, mean 6 s.e.m.) were

purchased from a farm in Free State, South Africa, and
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transported to the Lichtenburg Game Breeding Center, South

Africa (26u069S, 26u10’E) for study. The study was conducted in

February and March 2009 (southern hemisphere summer). The

birds were implanted with electrodes for measuring brain waves of

the hyperpallium (electroencephalogram, EEG), eye movements

(electrooculogram, EOG), neck muscle tone (electromyogram,

EMG) and a thermistor for brain temperature using standard

aseptic techniques by experienced surgeons (see Text S1 for

details). EEG, EOG and EMG electrodes terminated at a plug

housed in a head-mounted aluminum box (length6width6height:

44624632 mm). The plug connected to an upgraded version of a

logger (Neurologger) previously used for recording the EEG of

birds [20] (Text S1). A 3-dimensional accelerometer on the

Neurologger recorded acceleration as a positive or negative

deflection depending on the direction of the movement along

each of the three axes; the magnitude of the deflection was

proportional to the acceleration. Temperature was recorded via a

thermistor in the brain connected to a logger positioned

subcutaneously in the neck [21] (Text S1). All methods were

approved by the National Zoological Gardens of South Africa

(P08/22) and the Animal Ethics Screening Committee at the

University of the Witwatersrand (2008/45/05), and adhere to the

NIH standards regarding the care and use of animals in research.

The recordings were conducted at two locations. First, the

ostriches were group-housed in an outdoor enclosure (565 m) with

occasional access to a connecting enclosure of similar size. Grass

(Eragrostis spp.), alfalfa (Medicago sativa), pelleted ostrich food and

clean water were available ad libitum. The main enclosure was

monitored using 8 video cameras equally spaced along the

perimeter, and an infrared illuminator in each corner provided

light (850 nm) for nighttime recordings. These video recordings

were used to establish relationships between specific behaviors and

the electrophysiological and accelerometer signals. After 7–10 d,

the ostriches were moved to a large (51 ha) naturalistic reserve less

than 1 km away (Figure 1). The reserve had a floral assemblage

characteristic of South African savannah (or Highveld) and large

herbivores that are sympatric with ostriches in the wild (e.g.,

blesbok, Damaliscus pygargus phillipsi; impala, Aepyceros melampus; roan

antelope, Hippotragus equines). Ostriches occupied the full area of the

reserve, as determined by a GPS logger attached to the leg of each

bird for their first 10 days in the camp (Figure 1). These

naturalistic recordings continue the recent push for EEG-based

sleep research to move into more wild environments [22], as some

aspects of normal physiology may not be reflected in the

laboratory [19,22–26].

EEG, EOG, EMG and head movements were recorded from all

ostriches for between 0.7 to 18.6 d total (9.262.8 d, mean 6

s.e.m.). Signals were downsampled from 800 Hz to 200 Hz for

visualization and analysis in Somnologica Science v. 3.3.1

(EmblaH, www.embla.com). One undisturbed 24 h day in the

reserve (,13L:11D) was visually scored for wakefulness, SWS and

REM sleep using 4 s epochs. Epochs that contained more than

one state were scored according to the state occupying the

majority of that epoch. This undisturbed day was characterized by

unexceptional temperatures (black globe temperature, day:

29.760.1uC, night: 14.660.7uC), little-to-no wind (wind speed,

day: 0.8060.29 m/s, night: 0.0560.03 m/s), and no rain, as

measured by a weather station adjacent to the reserve. Brain

temperature was recorded successfully from 5 of the 6 ostriches

throughout the entire study. To investigate the relationship

between brain state and temperature, we compared brain

temperature at night during wakefulness to that during sleep.

Because the logger recorded brain temperature instantaneously at

the top of every second minute, only bouts of wakefulness and

sleep that occupied the entire 2 min period immediately before

temperature was recorded were included in this analysis. Brain

temperature during REM sleep could not be calculated reliably as

episodes of REM sleep rarely met this criterion. Data were

analyzed with one-way repeated measures analysis of variance

(rmANOVA) or paired t-tests using SYSTAT 10 (�SPSS, Inc.,

www.systat.com).

Results

An awake ostrich had both eyes open and was generally

walking, feeding or preening. Not surprisingly, during such

periods, neck muscle tone was highest and eye movements were

common. Sleep followed with the cessation of these waking

activities. During SWS, ostriches typically sat motionlessly with

their necks held periscopically above the ground; both eyes were

always open though without movement (Movie S1). Consequently,

an ostrich in SWS did not look like a typical sleeping animal and

instead gave the impression of an alert bird. This wake-like sleep

posture may explain why sleep is rarely reported in studies on time

budgets and activity patterns in wild ostriches [27,28]. SWS with

open eyes has been reported in other avian [29–32] and

mammalian [33,34] species, and may allow for visual processing

Figure 1. Four of the ostriches in the naturalistic reserve in South Africa (left). Photograph by J.A.L. Movement data (green tracks, sampled
once per second) from one ostrich for its first 8 d in the reserve (right); outline of the tracks shows the boundary of the reserve. Satellite map from
Google Earth (www.google.com/earth).
doi:10.1371/journal.pone.0023203.g001
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concurrent with sleep [32,35]. During SWS, the EEG showed slow

waves (Figure 2A, Figure S1) like those recorded from other birds

engaged in SWS [36–38]. The amplitude of slow waves during

SWS were largely symmetric between the hemispheres, although

short asymmetries were observed periodically. The magnitude of

these asymmetries resembled that observed in some other birds

[31,32].

The transition from SWS to REM sleep was marked by bilateral

eye closure, rapid eye movements, and a forward falling head

(Movie S1, Figure 2B, Figure S1). As in owls [29,30] and some

ruminating mammals [33], bilateral eye closure was observed only

in conjunction with REM sleep. In ostriches, the drooping and

swaying head movements that accompanied REM sleep were

readily distinguishable from movements occurring during wake-

fulness (Figure 3, Figure S2). In extreme cases, the head fell to the

ground [see also 39,40]. This behavioral correlate of REM sleep

has been observed in wild ostriches, where it was attributed to

drowsiness:

‘‘Closing its eyes, a tired Ostrich would slowly tilt its head

downward and, after a while, jerk it up just to droop it

again.’’ [41]

Interpreting this behavior as belonging to a drowsy animal is

understandable given the alert-like sleep posture of an ostrich

engaged in SWS. These REM sleep-related head movements have

also been described in a close relative of the ostrich, the greater

rhea (Rhea americana) [42]. Concomitant with this REM sleep

behavior in ostriches, muscle tone was generally lower than during

SWS (Figure 2B, Figures S1,S2). The end of an episode of REM

sleep was almost always marked by a rapid rise of the head,

cessation of rapid eye movements, and restoration of wake-like or

SWS-like muscle tone (depending on the state entered next)

(Figure 2B, Figure S1). Thus, the EOG and accelerometer signals

served as well-defined ‘bookends’ to an episode of REM sleep.

Within these ‘bookends’, the EEG showed SWS-like slow waves

that alternated with REM sleep-like activation (Figure 2B, Figure

S1). This mixed REM sleep state was identified in all ostriches.

REM sleep with activation and REM sleep with slow waves could

both occur with rapid eye movements, reduced muscle tone, and

head movements; indeed, REM sleep with slow waves could occur

with rapid eye movements and the lowest muscle tone (Figure 2B,

Figure S1). This and the fact that the amplitude of slow waves

during an episode of REM sleep was generally stable (e.g.,

Figure 2B, Figure S1), suggest that these slow waves do not simply

reflect transitions into and out of REM sleep; in all other birds

studied, such transitions are rapid (,2 s) [31,36,37,43–50].

Indeed, such an unusual REM sleep state has not been reported

previously in any bird, despite many studies of avian sleep, on

phylogenetically diverse species, that employed comparable EEG,

EOG and EMG recording techniques [31,36,37,43–50].

Based on the electrophysiological and accelerometer signals

recorded from the animals in the reserve, ostriches spend

88.661.7% (mean 6 s.e.m.) of the day and 13.861.8% of the

night awake (Figure 4). This daytime value is similar to the amount

of unequivocal wakefulness (i.e., activity) reported for ostriches

in the wild [51,52]. Such diurnality was reflected in brain

temperature, which was significantly higher during the day

(39.460.1uC) than during the night (38.360.1uC, P,0.001)

(Figure 4). Ostriches spend 9.561.5% of the day and

62.262.1% of the night in SWS (Figure 4). The amount of

SWS decreased across the night (rmANOVA on ‘time of night’:

F = 2.791, df = 10,30, P = 0.014) (Figure 4), a pattern that has been

observed in other birds [31,38,49]. The brain was significantly

cooler when in SWS after sunset (38.260.1uC) than when awake

after sunset (39.260.3uC, P = 0.047); however, circadian effects on

brain temperature cannot be discounted, as long ($2 min) bouts

of SWS and wakefulness were rare before and after astronomical

twilight, respectively. REM sleep occupied 1.960.9% of the day

and 24.060.9% of the night (or 26.361.3% of 24 h total sleep

time) (Figure 4), the most reported for any bird [18,19,53].

Although the amount of REM sleep increases across the night in

other birds [31,38,49,50], the mean increase in ostriches (Figure 4)

did not reach statistical significance (rmANOVA on ‘time of

night’: F = 1.757, df = 10,30, P = 0.113) nor did the mean increase

in REM sleep/total sleep time (F = 1.974, df = 10,30, P = 0.073),

perhaps due to the small sample size. Episodes of REM sleep,

typically less than 10 s in duration in other birds [36,37,50,54],

lasted 2767 s on average in ostriches, and could last up to 5 min

(2.360.9 min, mean maximum 6 s.e.m.), the longest reported for

any bird.

Discussion

Ostriches exhibit a heterogeneous REM sleep state character-

ized by eye closure, rapid eye movements, reduced muscle tone,

and a forward falling head, occurring with forebrain activity that

flips between REM sleep-like activation and SWS-like slow waves.

To our knowledge, such a state has not been reported previously in

any bird. Ostriches also have the longest REM sleep episodes, and

more REM sleep overall, than any other avian species. The

unusual REM sleep state of ostriches is unlikely to be related to

their large size per se, because the Emperor penguin (Aptenodytes

forsteri), the next largest species studied (,28 kg), shows REM sleep

typical of other birds [37]. Moreover, REM sleep occupied 13% of

sleep time, and the duration of REM sleep episodes was less than

10 s in penguins [37], values typical of small birds [18,19,36,

38,50,53,54].

How might the ostrich brain initiate this heterogeneous REM

sleep state? In mammals, REM sleep-related forebrain activation,

rapid eye movements, and reduced muscle tone are generated by

the brainstem [2]. In mammals [2,3] and birds [55], forebrain

activation arises via the excitatory action of ascending cholinergic

REM sleep-on neurons in the rostral pons of the brainstem.

Flipping between activation and slow waves during REM sleep in

ostriches might reflect variation in the strength of signals from

ascending REM sleep-on neurons that promote activation [56]

and SWS-generating mechanisms of the ventrolateral preoptic

nucleus [57,58] or those intrinsic to the forebrain [59–61]. If true,

then these competing effects appear to occur independently from

variation in the strength of descending REM sleep-on neurons that

reduce muscle tone [56], because the lowest tone could occur

either when the hyperpallium was activated or showed slow waves.

An investigation combining EEG and recordings of neuronal

activity in the brainstem and ventrolateral preoptic nucleus might

reveal the source of the unique REM sleep state in ostriches.

The slow wave component of the REM sleep state described here

in ostriches resembles that observed in monotremes. Indeed,

monotremes are the only other animals known to engage in slow

waves during a state which would otherwise be unequivocally

identified as REM sleep [4–6,8,9,12]. Concurrent with slow waves in

the cortex, platypuses exhibit REM sleep-like rapid eye movements,

reduced muscle tone, and twitches of the head and bill [8]. If one

calculates the amount of REM sleep as periods with rapid eye

movements and reduced muscle tone, then platypuses have more

REM sleep than any other mammal [8,9,62,63], just as ostriches

have more REM sleep than any other bird using similar criteria.

Ostriches Sleep like Platypuses
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Figure 2. (A) Representative slow wave sleep (SWS, blue bar) in the ostrich characterized by high amplitude, slow waves in the electroencephalogram
(EEG), the absence of rapid eye movements (measured via electrooculogram, EOG) and head movements (accelerometer, ACC), and moderate muscle
tone (electromyogram, EMG). Here, SWS is interrupted by a brief awakening (green bar) characterized by low amplitude, high frequency EEG activity, and
a fast (200 ms) lateral sweep of the head, perhaps as a quick scan of the local environment, followed by a re-entrance into SWS. (B) Representative rapid
eye movement (REM) sleep (red bar). Note that the EEG during REM sleep shows either activation (red shading) or slow waves (blue shading). Irrespective
of the type of EEG activity, rapid eye movements, a forward falling and swaying head with moderate-to-low muscle tone occurred invariably during REM
sleep in the ostrich. Heave ACC: movement along the dorso-ventral axis with a positive slope denoting downward movement, Sway ACC: lateral axis
with positive denoting movement to the right, Surge ACC: anterior-posterior axis with negative denoting movement forward. Vertical bars to the right of
each EEG, EOG and EMG trace denote 100 mV, and 100 milli g-forces to the right of each ACC trace. Trace duration: 60 s.
doi:10.1371/journal.pone.0023203.g002
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Why might ostriches sleep like platypuses? There appear to be

few traits unique to ostriches and monotremes that could explain

such an unusual REM sleep state. However, the fact that

monotremes and ostriches are both members of the most basal

group within their respective lineage [64,65], suggests that this

type of REM sleep may reflect an early stage in the evolution of

REM sleep. Although other (yet unknown) factors may explain the

similarities between ostrich and monotreme REM sleep, it is

remarkable that of all the species studied (c. 100 mammals [9,63]

and 30 birds [15–19]) only species of the most basal lineages exhibit

such a state. The absence of REM sleep in the brainstem and

cortex of turtles [11], suggests that the aspects of REM sleep

common to monotremes and ostriches arose independently in the

most recent common ancestor to all mammals and again in

ancestral birds (although an analogous study on a crocodilian, as

the closest living relative to modern birds, would help clarify the

evolutionary origin of the REM sleep state described here in

ostriches). In mammals, forebrain activation during REM sleep (or

‘classical’ REM sleep) evolved in the common ancestor of

marsupial and eutherian mammals, as monotremes may not

engage in a comparable state. In birds, ‘classical’ REM sleep was

apparently present, at least to some extent, in the ancestor to all

living birds, but alternates with the more basal, monotreme-like

REM sleep state. It is possible that earlier birds may have slept

exclusively like monotremes. This evolutionary scenario suggests a

recurring sequence of steps in the evolution of REM sleep shared

by mammals and birds in which SWS and REM sleep arose as a

single heterogeneous state that became temporally segregated into

distinct SWS and REM sleep with forebrain activation. Further-

more, it suggests that, as an evolutionarily new feature of sleep,

forebrain activation during ‘classical’ REM sleep may support

shared sleep functions not found in more basal animals.

Identifying the functional significance of this evolutionary pattern

is an important avenue for future research.

Supporting Information

Figure S1 (A–H) Electroencephalogram (EEG) of the left
and right hyperpallia, electrooculogram (EOG) of the
left and right eye, the three axes (heave, sway and surge)
of the head-mounted accelerometer (ACC), and electro-
myogram (EMG) of the nuchal muscle showing slow
wave sleep (SWS, blue bar), rapid eye movement (REM)
sleep (red bar) and wakefulness (green bar) in the
ostrich. See main text for a description of each state. These

figures illustrate the well-defined nature of an episode of REM

sleep, as well as demonstrate the variation in EEG and EMG

activity during REM sleep. Heave ACC: movement along the

dorso-ventral axis with a positive slope denoting downward

movement, Sway ACC: lateral axis with positive denoting

movement to the right, Surge ACC: anterior-posterior axis with

negative denoting movement forward. Vertical bars to the right of

each EEG, EOG and EMG trace denote 100 mV, and 100 milli g-

forces to the right of each ACC trace. Trace duration: 60 s.

(PDF)

Figure S2 The three 2-dimensional plots that constitute
the 3-dimensional Figure 3 in the main article. (reprinted

here in the bottom left corner). These plots illustrate the

distinctiveness of wakefulness (green), slow wave sleep (SWS, blue)

and rapid eye movement (REM) sleep (red) based on differences in

eye movements (measured via electrooculogram, EOG), head

movements (accelerometer, ACC) and neck muscle tone (electro-

myogram, EMG). Variables calculated as the logarithm of power

density (EOG: 0.4–9.8 Hz using the larger value between the left

Figure 3. Plot of data from an ostrich illustrating the
distinctiveness of wakefulness (green), slow wave sleep (SWS,
blue) and rapid eye movement (REM) sleep (red) based on
differences in eye movements (measured via electrooculo-
gram, EOG), head movements (accelerometer, ACC) and neck
muscle tone (electromyogram, EMG). SWS is associated with few
eye movements, a relatively motionless head and moderate muscle
tone; REM sleep is associated with rapid eye movements, head
movements and moderate-to-low muscle tone. During wakefulness,
muscle tone is generally highest with large head and eye movements.
Variables calculated as the logarithm of power density (EOG: 0.4–9.8 Hz
using the larger value between the left and right eye for each epoch,
surge axis of the ACC: 0.0–9.8 Hz, EMG: 9.8–69.9 Hz). See Figure S2 for
the three 2-dimensional plots that constitute this 3-dimentional figure.
doi:10.1371/journal.pone.0023203.g003

Figure 4. The percentage of time (mean, s.e.m.) spent in
wakefulness (green), slow wave sleep (SWS, blue) and rapid
eye movement (REM) sleep (red) for each hour of the day
(sunrise-to-sunset, yellow shading) and night (grey shading).
Brain temperature (uC) is given at the bottom of the panel.
doi:10.1371/journal.pone.0023203.g004
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and right eye for each epoch, surge axis of the ACC: 0.0–9.8 Hz,

EMG: 9.8–69.9 Hz).

(TIF)

Movie S1 Video showing the behavioral correlates of
slow wave sleep (SWS) and rapid eye movement (REM)
sleep in the ostrich. SWS is characterized by open eyes and a

vertically-held head; REM sleep is characterized by bilateral eye

closure and a drooping head.

(MP4)

Text S1 Supporting Material.

(PDF)
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